Biosynthesis of l-Sorbose and l-Psicose Based on C-C Bond Formation Catalyzed by Aldolases in an Engineered Corynebacterium glutamicum Strain.
نویسندگان
چکیده
The property of loose stereochemical control at aldol products from aldolases helped to synthesize multiple polyhydroxylated compounds with nonnatural stereoconfiguration. In this study, we discovered for the first time that some fructose 1,6-diphosphate aldolases (FruA) and tagatose 1,6-diphosphate (TagA) aldolases lost their strict stereoselectivity when using l-glyceraldehyde and synthesized not only l-sorbose but also a high proportion of l-psicose. Among the aldolases tested, TagA from Bacillus licheniformis (BGatY) showed the highest enzyme activity with l-glyceraldehyde. Subsequently, a "one-pot" reaction based on BGatY and fructose-1-phosphatase (YqaB) generated 378 mg/liter l-psicose and 199 mg/liter l-sorbose from dihydroxyacetone-phosphate (DHAP) and l-glyceraldehyde. Because of the high cost and instability of DHAP, a microbial fermentation strategy was used further to produce l-sorbose/l-psicose from glucose and l-glyceraldehyde, in which DHAP was obtained from glucose through the glycolytic pathway, and some recombination pathways based on FruA or TagA and YqaB were constructed in Escherichia coli and Corynebacterium glutamicum strains. After evaluation of different host cells and combinations of FruA or TagA with YqaB and optimization of gene expression, recombinant C. glutamicum strain WT(pXFTY) was selected and produced 2.53 g/liter total ketoses, with a yield of 0.50 g/g l-glyceraldehyde. Moreover, deletion of gene cgl0331, encoding the Zn-dependent alcohol dehydrogenase in C. glutamicum, was confirmed for the first time to significantly decrease conversion of l-glyceraldehyde to glycerol and to increase yield of target products. Finally, fed-batch culture of strain SY14(pXFTY) produced 3.5 g/liter l-sorbose and 2.3 g/liter l-psicose, with a yield of 0.61 g/g l-glyceraldehyde. This microbial fermentation strategy also could be applied to efficiently synthesize other l-sugars.
منابع مشابه
Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine
BACKGROUND L-ornithine is effective in the treatment of liver diseases and helps strengthen the heart. The commercial applications mean that efficient biotechnological production of L-ornithine has become increasingly necessary. Adaptive evolution strategies have been proven a feasible and efficient technique to achieve improved cellular properties without requiring metabolic or regulatory deta...
متن کاملBIOTECHNOLOGICAL PRODUCTS AND PROCESS ENGINEERING Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production
The first biosynthetic system for lactate (LA)based polyesters was previously created in recombinant Escherichia coli (Taguchi et al. 2008). Here, we have begun efforts to upgrade the prototype polymer production system to a practical stage by using metabolically engineered Gram-positive bacterium Corynebacterium glutamicum as an endotoxin-free platform. We designed metabolic pathways in C. glu...
متن کاملOrnithine cyclodeaminase-based proline production by Corynebacterium glutamicum
BACKGROUND The soil bacterium Corynebacterium glutamicum, best known for its glutamate producing ability, is suitable as a producer of a variety of bioproducts. Glutamate is the precursor of the amino acid proline. Proline biosynthesis typically involves three enzymes and a spontaneous cyclisation reaction. Alternatively, proline can be synthesised from ornithine, an intermediate of arginine bi...
متن کاملEngineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production.
A sufficient supply of NADPH is a critical factor in l-lysine production by Corynebacterium glutamicum. Endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of C. glutamicum was replaced with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of Streptococcus mutans, which catalyzes the reaction of glyceraldehyde 3-phosphate to 3-phosphoglycer...
متن کاملHarnessing novel chromosomal integration loci to utilize an organosolv‐derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum
A successful bioeconomy depends on the manifestation of biorefineries that entirely convert renewable resources to valuable products and energies. Here, the poorly exploited hemicellulose fraction (HF) from beech wood organosolv processing was applied for isobutanol production with Corynebacterium glutamicum. To enable growth of C. glutamicum on HF, we integrated genes required for D-xylose and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 13 شماره
صفحات -
تاریخ انتشار 2015